Uses for Random and Stochastic Input on Micron’s Automata Processor

نویسندگان

  • Jack Wadden
  • Ke Wang
  • Mircea Stan
  • Kevin Skadron
چکیده

Micron’s Automata Processor (AP) is a configurable memorybased device, purpose-built to emulate a theoretical nondeterministic finite automata (NFA). While NFAs are not particularly suited for floating point computation, they are extremely powerful and efficient pattern matchers and have been shown to provide large speedups over traditional von Neumann execution for rule-based, data-mining applications. While these kernels like associative rule mining, Brill tagging, protein motif identification have seen impressive orders of magnitude speedups, the exact capabilities of the AP and its advantage over traditional von Neumann architectures like CPUs and GPUs remains an open research area. As an example of the potential power of the AP, we demonstrate its ability to simulate probabilistic automaton and accomplish stochastic computation using a random or stochastic input stream. The combination of probabilistic automata and stochastic computation open up a wide range of application kernels, previously not known to be implementable on the AP, with the potential for impressive speedups over CPUs and GPUs. This paper first presents the construction of probabilistic automata, and shows how they can be used to simulate Markov chains, Brownian motion, and stochastic computation. We then suggest small, low-cost changes to the AP architecture that would enable more efficient construction of these previously unimplementable application kernels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subset Encoding: Increasing Pattern Density for Finite Automata

Micron’s Automata Processor is an innovative reconfigurable hardware accelerator for parallel finite-automatabased regular-expression matching. While the Automata Processor has demonstrated potential for many pattern matching applications, other applications receive reduced benefit from the architecture due to capacity limitations or routing limitations. In this paper, we present an efficient i...

متن کامل

Entity Resolution Acceleration using Micron’s Automata Processor

Entity Resolution (ER), the process of finding identical entities across different databases, is critical to many information integration applications. As sizes of databases explode in the big-data era, it becomes computationally expensive to recognize identical entities for all possible records with variations allowed. Profiling results show that approximate matching is the primary bottleneck....

متن کامل

Design of low power random number generators for quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA.  Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...

متن کامل

Fast Cellular Automata Implementation on Graphic Processor Unit (GPU) for Salt and Pepper Noise Removal

Noise removal operation is commonly applied as pre-processing step before subsequent image processing tasks due to the occurrence of noise during acquisition or transmission process. A common problem in imaging systems by using CMOS or CCD sensors is appearance of  the salt and pepper noise. This paper presents Cellular Automata (CA) framework for noise removal of distorted image by the salt an...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015